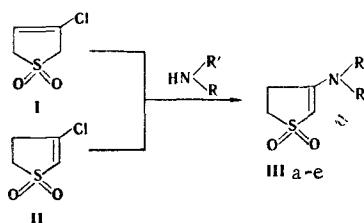
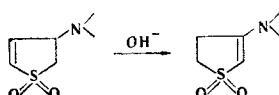


REACTION OF 3-CHLORO-3-SULFOLENE AND
3-CHLORO-2-SULFOLENE WITH ALKYL(ARYL)AMINES

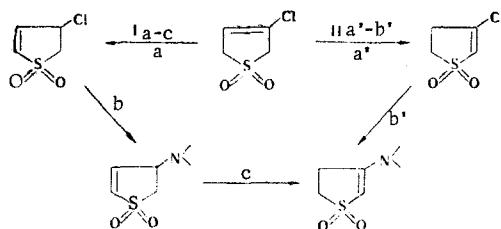

P. G. Dul'nev

UDC 547.732.07


The corresponding 3-alkylamino-2-sulfolenes are formed in the reaction of 3-chloro-3-sulfolene and 3-chloro-2-sulfolene with aliphatic amines. It was established that under the influence of the amines 3-chloro-3-sulfolene initially undergoes isomerization to 3-chloro-2-sulfolene with subsequent replacement of the chlorine atom by the amine component. 3-Chloro-3-sulfolene and 3-chloro-2-sulfolene are inert in the reaction with aromatic amines that have low basicities.

The synthesis of 4-aryl- and 3-aryl(alkyl)amino-2-sulfolenes has been previously described [1-4]. In the present communication we present the results of a study of the reaction of 3-chloro-3-sulfolene (I) and 3-chloro-2-sulfolene (II) with alkyl(aryl)amines.

We established by thin-layer chromatography that only 3-alkylamino-2-sulfolenes (IIIa-e) (Table 1) are formed in the reaction of aliphatic amines with I and II:



To obtain proof for the 3-alkylamino-2-sulfolene structure we accomplished the independent synthesis of IIIc, e by isomerization of 4-piperidyl-2-sulfolene and 4-dimethylamino-2-sulfolene in the presence of sodium hydroxide by the method described in [6, 7]. The identical character of the compounds obtained

by the two methods was confirmed by their IR spectra and the absence of melting-point depressions in the case of mixtures of the compounds.

Aromatic amines that have low basicities do not replace the chlorine atom in II and do not induce isomerization of I to II under the conditions selected. Taking into account these data and the data in [5], as well as our results from the isomerization of 4-aryl(alkyl)amino-2-sulfolenes [6, 7], we may assume two probable schemes for the formation of the 3-alkylamino-2-sulfolenes (IIIa-e):

Institute of Physical Organic Chemistry and Coal Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev 252160. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 892-894, July, 1979. Original article submitted June 29, 1978.

TABLE 1. Characteristics of the Compounds Obtained

Compound	R	R'	mp, °C	Found, %		Empirical formula	Calc., %		Yield, %	
				N	S		N	S	I	II from I
IIIa	H	C ₄ H ₉	123—124	7.5	17.0	C ₈ H ₁₅ NO ₂ S	7.4	16.9	91	92
IIIb	H	—CH ₂ —CH=CH ₂	115—116	8.1	18.3	C ₇ H ₁₁ NO ₂ S	8.1	18.5	90	91
IIIc		—(CH ₂) ₅ —	122—123	6.7	15.3	C ₉ H ₁₅ NO ₂ S	6.9	15.6	90	92
IIId		—(CH ₂) ₂ O(CH ₂) ₂ —	179—180	6.7	15.4	C ₈ H ₁₃ NO ₃ S	6.9	15.7	93	92
IIIE	CH ₃	CH ₃	162—164	8.8	19.9	C ₆ H ₁₁ NO ₂ S	8.7	19.9	95	96

Steps Ia—b were proposed by Prochazka [5]. To verify step Ic we accomplished the reacting of 4-morpholinyl- and 4-piperidyl-2-sulfolenes with morpholine and piperidine under the conditions of the reaction of I with aliphatic amines, as a result of which we obtained the addition products 3,4-dipiperidylsulfolane (IV), 3,4-dimorpholinylsulfolane (V), and 3-morpholinyl-4-piperidylsulfolane (VI). Isomerization products, viz., 3-morpholinyl-2-sulfolene and 3-piperidyl-2-sulfolene, were not detected by thin-layer chromatography (TLC). This makes it possible to assume that the reaction of aliphatic amines with 3-chloro-3-sulfolene is realized via scheme IIa'-b'. 3-Chloro-2-sulfolene, which was obtained by the reaction of 3-chloro-3-sulfolene with ammonium hydroxide, also confirms scheme IIa'-b'.

EXPERIMENTAL

Chromatography on a loose layer of activity II aluminum oxide was used to evaluate the course of the reaction and the purity of the substances; the chromatograms were developed with iodine vapors.

3-Piperidyl-2-sulfolene (IIIC) (Table 1). A) A 3.4-g (0.04 mole) sample of piperidine was added to a solution of 1.5 g (0.01 mole) of I in 35 ml of methanol, and the mixture was heated at 55—60°C for 8 h. The methanol and excess piperidine were removed by distillation, and the residue was washed with 4 ml of cold water and crystallized from 50% aqueous methanol.

B) The reaction of 0.75 g (0.005 mole) of II and 1.7 g (0.02 mole) of piperidine under the conditions of experiment A gave 0.9 g (90%) of sulfolene IIIC.

C) A total of 10 ml of a 1.5 N NaOH solution was added to a solution of 2.0 g (0.01 mole) of 4-piperidyl-2-sulfolene in 10 ml of dioxane, and the mixture was heated with stirring at 60°C for 5 h. The resulting solution was then neutralized with 1 N HCl and evaporated. The residue was washed with 4 ml of cold water and crystallized from 50% ethanol to give 1.5 g (75%) of IIIC. No melting-point depressions were observed for mixtures of this product with the IIIC obtained in experiments A and B.

3-Dimethylamino-2-sulfolene (IIIE). The reaction of 1.6 g (0.01 mole) of 4-dimethylamino-2-sulfolene under conditions similar to those in the synthesis of IIIC by method C gave 1.5 g (94%) of sulfolene IIIE. Compounds IIIa—c, e (Table 1) were obtained by reaction of I and II with butyl-, allyl-, morpholinyl-, and dimethylamines under the conditions of experiment A.

3-Chloro-2-sulfolene (II). A total of 10 ml of 25% ammonium hydroxide was added to a solution of 1.5 g (0.01 mole) of 3-chloro-3-sulfolene in 35 ml of methanol, and the mixture was stirred at room temperature for 6 h and at 50°C for 5 h. The resulting solution was evaporated, and the oily residue was extracted with chloroform. Workup of the extract gave 0.6 g (40%) of II with mp 87—88°C (from 5% ethanol). No melting-point depression was observed for a mixture of this product with 3-chloro-2-sulfolene synthesized by the method in [5].

3,4-Dipiperidylsulfolane (IV). A 2.0-g (0.01 mole) sample of 4-piperidyl-2-sulfolene and 4.3 g (0.05 mole) of piperidine were dissolved in 130 ml of methanol, and the solution was heated at 60°C for 20 h, after which it was evaporated, and the residue was washed with 5 ml of cold water and crystallized from methanol to give 2.74 g (96%) of a product with mp 150—151°C. Found: N 9.7; S 11.3%. C₁₄H₂₆N₂O₂S. Calculated: N 9.7; S 11.2%. The identical character of the IV that we obtained by the method in [8] and by the addition of piperidine to 4-piperidyl-2-sulfolene was proved by the absence of a melting-point depression for a mixture of the two samples and their IR spectra.

3-Morpholinyl-4-piperidylsulfolane (VI). A) A solution of 2.0 g (0.01 mole) of 4-morpholinyl-2-sulfolene and 2.6 g (0.03 mole) of piperidine in 25 ml of methanol was heated at 60°C for 25 h, after which the methanol and excess piperidine were removed by distillation, and the residue was crystallized from 50% aqueous acetone to give 2.6 g (92%) of a product with mp 141—142°C. Found: N 9.7; S 11.1%. C₁₃H₂₄N₂O₃S. Calculated: N 9.7; S 11.1%.

B) A 7.8-g (0.09 mole) sample of morpholine was added to a solution of 2.0 g (0.01 mole) of 4-piperidyl-2-sulfolene in 20 ml of methanol, and the mixture was heated at 60°C for 10 h. The resulting solution was evaporated, and the residue was crystallized from 50% aqueous acetone to give 2.7 g (98%) of VI. No melting-point depression was observed for mixtures of the products obtained in experiments A and B.

3,4-Dimorpholinylsulfolane (V). A 2.0-g (0.01 mole) sample of 4-morpholinyl-2-sulfolene and 8.7 g (0.1 mole) of morpholine were dissolved in 70 ml of methanol, and the solution was heated at 60°C for 20 h. It was then evaporated, and the residue was crystallized from 10% ethanol to give 2.6 g (90%) of a product with mp 167-168°C. Found: N 9.5; S 11.1%. $C_{12}H_{22}N_2O_4S$. Calculated: N 9.6; S 11.0%.

LITERATURE CITED

1. T. É. Bezmenova and P. G. Dul'nev, Khim. Geterotsikl. Soedin., No. 9, 1193 (1972).
2. P. G. Dul'nev and T. É. Bezmenova, Khim. Geterotsikl. Soedin., No. 10, 1132 (1974).
3. S. M. Lukashev and T. É. Bezmenova, Khim. Geterotsikl. Soedin., No. 5, 625 (1974).
4. F. Ellis and P. G. Sammes, J. Chem. Soc., Perkin Trans. I, 22, 2866 (1972).
5. M. Prochazka, Collect. Czech. Chem. Commun., 25, 465 (1960).
6. T. É. Bezmenova, A. F. Rekasheva, T. S. Lutsii, P. G. Dul'nev, and V. P. Tantsyura, Khim. Geterotsikl. Soedin., No. 5, 627 (1975).
7. P. G. Dul'nev, Master's Dissertation, Institute of Organic Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev (1975).
8. F. Ellis and P. G. Sammes, J. Chem. Soc., Perkin Trans. I, 12, 1560 (1972).

SYNTHESIS OF ω, ω' -DIARYL-SUBSTITUTED 2,5-DIVINYLTIOPHENES

L. Ya. Malkes, R. A. Minakova,
and L. V. Kozyreva

UDC 547.732:541.634

The phosphonate modification of the Wittig reaction was used to synthesize ω, ω' -diaryl-substituted 2,5-divinylthiophenes that contain phenyl, 4-biphenyl, 2-naphthyl, 9-anthryl, and 2-thienyl groups, as well as functional substituted 2,5-distyrylthiophenes.

Vinyl derivatives of thiophene have found application as optical bleaches [1] and biologically active substances [2, 3]. These compounds, which include various chromophore groupings, may, like the analogous benzene derivatives [4], be of interest as effective luminophores.

We have synthesized ω, ω' -diaryl-substituted 2,5-divinylthiophenes (DDVT) that contain phenyl, 2-naphthyl, 4-biphenyl, 9-anthryl, and 2-thienyl groups, as well as functional substituted 2,5-distyrylthiophenes (Table 1).

The arylthienylethylenes described in the literature were obtained by various methods [5, 6]. In particular, arylthienylethylenes were synthesized via the Wittig reaction both from formylthiophene [7] and from chloromethylthiophene [8]. However, a mixture of the cis and trans isomers is obtained in both cases.

For the synthesis of the DDVT we used the phosphonate modification of the Wittig reaction [9], which does not have this disadvantage; the reaction products are, as a rule, the trans isomers.

To obtain the DDVT we first used diethyl thiophenebis(methylenephosphonate) (I), since the use of 2,5-diformylthiophene as the starting compound would lead to complication of the synthesis and make it a multi-step process.

All-Union Scientific-Research Institute of Single Crystals, Scintillation Materials, and Ultrapure Chemical Substances, Kharkov 310072. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 895-897, July, 1979. Original article submitted March 1, 1978; revision submitted December 18, 1978.